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SUMMARY

A unidirectional fiberglass epoxy composite specimen is modelled
as a homogeneous transversely isotropic continuum plate-like medium.
Acousto-ultrasonic non-contact input-output characterization by trac-
ing the P waves in the continuum is studied theoretically with a
transmitting and a receiving transducer located on the same face of
the plate. The isotropic plane of the equivalent continuum plate
model lies in the midplane of the plate and is parallel to the top and

the bottom faces of the plate.

The single reflection problem for an incident P wave at a stress-
free plane boundary in a semi-infinite transversely isotropic medium
whose isotropic plane is parallel to the plane boundary is analyzed
first. It is found that an obliquely incident P wave results in a
reflected P wave and a reflected SV wave. One quadrant of each of two
sheets of the slowness surfaces of the reflected P and SV waves is
plotted. The angle of reflection of the reflected P wave is equal to
the angle of incidence of the incident P wave. However, the angle of
reflection of the reflected SV wave is smaller than the angle of inci-
dent of the incident P wave. Consequently, no critical angle phenome-
non occurs. The amplitude ratios of the reflected P and SV waves to
the incident P wave as a function of the angle of incidence are

plotted. The balance in energy flux normal to the plane boundary is




checked.

The delay time for propagation between the transmitting and the
receiving transducers is computed as if the P waves were propagating
in an infinite half space. It is found that the directional depen-
dence of the phase velocity of the P waves propagating in the trans-
versely isotropic medium has a significant effect on the delay time,
as opposed to the directional independence of the phase velocity of

the P waves propagating in an isotropic medium.

The displacements associated with the P waves in the plate and
which may be detected by the non-contact receiving transducer are
approximated by an asymptotic solution for an infinite transversely
isotropic medium subjected to a harmonic point load. The polar dia-
grams for the directivity functions are plotted at frequencies of

0.75, 1.50 and 2.25 MHz.

The study enhances the quantitative understanding of acousto-

ultrasonic nondestructive evaluation (NDE) parameters such as the

stress wave factor (SWF) and wave propagation in fiber reinforced com-

posites or any other materials which can be modelled as transversely

isotropic media.




INTRODUCTION

Fiber reinforced composite materials are attractive materials for
aerospace applications because of fheir high specific mechanical prop-
erties. It has been shown that many composites, such as fiberglass
epoxy composites or fiber reinforced ceramics, as shown in Fig. 1, may
be modelled as homogeneous transversely isotropic continua [11. 1In
this work, acousto-ultrasonic (AU) non-contact input-output character-
ization of a homogeneous transversely isotropic elastic plate is

investigated by tracing P waves.

First, the single reflection problem of an incident P wave at a
stress-free plane boundary in a semi-infinite transversely isotropic
medium, whose isotropic plane is parallel to the plane boundary is
considered. At such boundaries, the conditions for the existence of
wave mode conversion, the angle of reflection of the reflected wave,
and the amplitude ratios of the reflected wave to the incident wave

are derived.

Second, the P wave input-output relations are derived when mul-
tiple reflections occur at the top and bottom faces of the plate. The
delay time between input and output versus the distance separating the
transmitting and receiving transducers is analyzed. The directivity

functions of the stresses associated with the P waves are computed.




And, the output displacement at the non-contact receiving transducer

is approximated by an asymptotic solution.

This investigation should enhance the quantitative understanding
of AU NDE parameter such as the stress wave factor. It also provides
the potential for assisting in the development of better NDE schemes

utilizing the SWF as well as other AU parameters.




SINGLE REFLECTION PROBLEM AT STRESS-FREE PIANE BOUNDARY IN SEMI-

INFINITE TRANSVERSELY ISOTROPIC MEDIUM WHOSE ISOTROPIC PIANE IS PARAL-

LEL _TO PLANE BOUNDARY FOR INCIDENT P WAVE

1. Reflected P and SV Waves

For a homogeneous linearly elastic transversely isotropic contin-
uum, the number of independent elastic constants is five [1]. Define a
coordinate system (x, y, z) for a semi-infinite transversely isotropic
medium whose isotropic plane is parallel to the plane boundary where
the reflection occurs as follows: the plane boundary contains the x
and y axes, and the z axis is the zonal axis of the medium, which is
in the direction parallel to the fiber direction shown in Fig. 1. See
Fig. 2. The generalized Hooke's law is written, relative to the (X,

y, z) coordinate system, as [1]

T = Ciqu,x + Ciov,y + C13w,2

= Cyjou,x + C11Vv,y + C13%,2

Ciau,x + C13v,y + C33w,2z (1)
= Cup(u,z + w,Xx)
Tyz = C44(V,Z + w,y)

T = Cgg(u,y + v,X)

where 7,4 (¥, s =X, y and z) are the normal (r = s) and shear (r = s)




stresses with respect to the coordinate system (x, y, z); u, v and w
are the displacement components of a point in the medium along the x,
y and z axes, respectively; "," denotes partial differentiation with
respect to the variable which follows; and Cy1, Cyp, C13, C33 and Cyy

are the five independent elastic constants where Cge = 1/2(Cy7 - Cip) .

Let a plane progressive wave be represented as [2]

(u, v, w) = A (Py, P,) exp{iw(Sgx + Syy + S,z - t)} (2)

Py,
where Sy, Sy and S, are the components of the slowness vector, which
is in the same direction as the normal to the wavefront and whose mag-
nitude ié equal to the reciprocal of the magnitude of the phase velo-
city [1], along the x,y and z axes, respectively; Py, Py and P, are
the components of a unit vector of particle displacement along the x,

y and z axes, respectively; A is the amplitude of particle displace-

ment; t denotes time and w denotes radian frequency.

It follows from Egs. (1) and (2) that the stresses can be repre-

sented as

Tyx = LwA[C11S4Pyx + ClzsyPy + C13S, P, lexp{iw(Sgx + Syy + S,z - t))

Tyy = iwA[C19S4P¢ + CllsyPy + C13S,P,lexp{iw(Syx + Syy + S,z - t)}

T,, = 1wA[C1354Py + C13SyPy + C33S,P,lexp(iw(Sgx + Syy + S,z - t)}

Tyg = 1wA[CyyS,P¢ + C,4SxPylexp{iw(Syx + Syy + S,z - t)} (3)
Tyz = iwA[CaaszPy + CAQSyPZ]exp(iw(Sxx + Syy + S,z - t)}

Txy = i6A[CggSyPy + CegSxPylexp(iw(Syx + Syy + S;z - )




The stress boundary conditions on the stress-free plane boundary

require that [2]

sz(I) + 7xz(R) =0
Tyz(I) + Tyz(R> =0 (&)

Tzz<1) + Tzz(R) =0

where rrz(I) (r=x, y and z) represents stresses on the plane boundary
associated with the incident P wave, and rrz<R) (r = x, y and z)
represents stresses on the plane boundary associated with the

reflected waves.

In order to satisfy Eq. (4), it is required that the frequency,
w, of the reflected waves be equal to that of the incident wave and

that [2]

SX(I) - SX(R)

1 R
Sy( ) = Sy( )

(5)

As a result of Egqs. (5), the slowness vectors of the incident
and reflected waves lie in a plane called the plane of incidence.
This analysis can be simplified by assuming that the plane of inci-
dence is the x = O plane; that is, the slowness vectors of the inci-

dent and reflected waves are in the x = 0 plane, as shown in Fig. 2.




Then it follows from Eqs. (5) that

5,1 = 5,® _ o,

It has been shown [3] that P waves or SV waves travelling in a
plane containing the zonal axis, z axis, of a transversely isotropic
medium are quasi-longitudinal and quasi-transverse, respectively; that
is, the components of the unit vector of particle displacement for
either the P or SV waves along both the y and z axes, Py and P, do
not vanish; whereas the components along the x axis, P,, do wvanish.
Therefore, it follows from Eqs. (3) and (6) that stresses associated

with P and SV waves are

(7)

It has also been shown that an SH wave travelling in a plane
containing the zonal axis, z axis, of a transversely isotropic medium
possesses a transverse displacement only; that is, for the coordinates
in Fig. 2 (Py, Py, P,) = (1,0,0) [3]. Therefore, it follows from

Egs. (3) and (6) that the stresses associated with SH waves are

(8)




Assume that a P wave is incident on the plane boundary. It fol-
lows from Egqs. (4) and (7) that

ryeD = 05 15, (M w0

y
(9

TXZ(I) = 0.
As a result of Eq.(9), it is immediately known from Eq. (4)
that TXZ(R) is equal to zero. This means that no SH wave will be
reflected back into the medium because a reflected wave of the SH

type would result in nonzero values of the stress ry,. So, Egs. (4)

reduce to:

Tyz(I) + ryz(R) =0

TZZ<I> + fzz(R) = 0. (10)

Since either a reflected P wave or a reflected SV wave results
in nonzero values of the stresses, ryz(R) and TZZ(R), it is therefore
concluded from Eqs. (7) and (10) that both a P wave and an SV wave may

be reflected back into the medium.

2. Slowness Surface for P and SV Waves

The equations of motion relative to the coordinate system

(x,y,2)




are [1}

= pu,tt

= pv,tt (11)

ﬁ
+
3
+
-
[

pw, tt

where the body forces are identically zero for the homogeneous solu-

tion.

It follows from Egs. (1), (2) and (1ll) that the following equa-

tions of motion are obtained:

[C11S4% + Ce6Sy? + CuuS,2 - plBy + (Cpp + Ce6) SxSyPy

+ (C13 + C44)SXSyPZ =0

(C12 + Cep)SxSyPy + [CgeSy? + C11Sy2 + CyyS,2 - PPy (12)

+ (C13 + Caa)SySsz =0

(C13 + Cas)SxSyPyx + (C13 + C4u)SyS;Py + [Cag(Sy? + 5,2)

+ C335,2 -p]P, = O

The condition for the existence of the plane wave solution is
expressed by setting the determinant of the matrix of the coefficients

of Pg, Py and P, in Eq. (12) equal to zero [1]:




2 2 2.

[C118x" + CeeSy” * CasSz #1 (Cz * Cee)SiSy (€13 * C44)55,
2 2 2

(C1p + Cop)SxSy (CeeSxC * C118,% * C4Sp° o1 (C13 + G858,

2,52 2
(€13 * €485, (€43 * €425y, [C4q(Sx™ * Sy™) + C335," -/l

(13)

By expanding Eq. (13), three sheets of slowness surface are

obtained. The slowness surface for an P wave is given in [3] as

C11%C4s 2 2 Cu4+C33 2
(——) (Sx#Sy) + ———) S,
2 2
2 2
+ 1/2 {[(011-044)(SX+SY )
2.9
+ (C33 -Cguy)S;]

2 2 2
+ 4(Sx+8y)S71(C11-C44) (C33-Cpe)

-(C13+C44) 21012 = . (14)
Similarly, the slowness surface for an SV wave is given in [3]

as

C 1+C 4 C44+C33
EEy shsh + 2 5

- 1/2 {[(Cll-C44)(S£+S§) + (C33-C44)S§]2
2 .22
+ 4(Sx*8y)Sz [(C11-Cas) (C33-Cas)

-((Cl3+C44)2]}1/2 = p . (15)

11




In the present study, the slowness vectors of the incident P
wave and the reflected P and SV waves are confined in the y-z plane,
as shown in Fig. 2. Take numerical values of elastic constants and
density given in [1] for the unidirectional fiberglass epoxy composite
as follows: Cy; = 10.581 x 10 N/m2, Cy3 = 4.679 x 109 N/m2, Cy5 -
40.741 x 109 N/m?, G,y = 4.422 x 107 N/m?, and p = 1850 kg/m3. One
quadrant of the intersection of the slowness surface of a P wave
travelling in the unidirectional fiberglass epoxy composite with the
plane x = 0 and one quadrant of the intersection of the slowness sur-
face of an SV wave travelling in the unidirectional fiberglass epoxy
composite with the plane x = 0 are obtained by substituting the numer-
ical values of the elastic constants and the density given above into

Eqs. (14) and (15), respectively, and are shown in Fig. 3.

3. Angle of Reflection

It follows from Eqs. (5) and (6) that the y-component of the
slowness vector of an incident P wave is equal to the y-component of
the reflected P wave as well as the y-component of the reflected SV
wave. Accordingly, the relation between the y-component of the slow-
ness vector of an incident P wave and the y-components of the slowness

vectors of the reflected P and SV waves is given as

Sy(I) - sy(P) = sy(sv) =b (16)

12




where Sy(I) represents the y-component of the slowness vector of an
incident P wave; Sy(P) represents the y-component of the slowness
vectors of the reflected P wave; Sy(SV) represents the y-component of
the slowness vector of the reflected SV waves; and b is a common con-

stant.

It follows from Egqs. (6), (14) and (16) that the relation
between the z-component of the slowness vector of an incident P wave

and that of the reflected P wave is

SZ(I) - -sz(P) (17)

The minus sign is due to the fact that the slowness vector of an
incident P wave points out of the medium, whereas the slowness vector
of the reflected P wave points into the medium, as shown in Fig. 2.
Consequently, the value of the z-component of the slowness vector of
an incident P wave, SZ(I), is negative, whereas that of the reflected

P wave, SZ(P), is positive.

The angle of reflection is defined as the angle between the
slowness vector of a reflected wave, either type P or SV, and the
normal to the plane boundary where the reflection occurs. Similarly,
the angle of incidence is defined as the angle between the slowness

vector of an incident P wave and the normal to the plane boundary, as

13




shown in Fig. 2. Therefore, the angle of reflection of a reflected P

wave f, is
P

bp = tan (s, (Pl /s, (B)) (18)

and the angle of incidence of an incident P wave 1 is
61 = tanl(s,(D/-s, (1)), (19)

It follows from Eqs. (16), (17), (18) and (19) that the angle
of incidence of an incident P wave is equal to the angle of reflection

of the reflected P wave, as shown in Fig. 2.

However, the angle of reflection of the reflected SV wave is not
equal to the angle of incidence of the incident P wave. For a given
value of b in Eq. (16), two values of the z-component of the slowness
vector, S,, of equal magnitude but opposite sign of an SV wave travel-
ling in the plane x = 0 in the transversely isotropic medium can be
obtained from the slowness surface for the SV wave from Eqs. (6) and
(15). The positive z-component of the slowness vector corresponds to
the reflected SV wave and is denoted as SZ(SV). Similarly, for a
given value of b, there exists a positive z-component of the slowness
vector, SZ(P), corresponding to the reflected P wave. Accordingly,

for any given value of b in Eq. (16), there exist a positive z-compo-

14




nent of the slowness vector for the reflected P wave, SZ(P), and a
positive z-component of the slowness vector for the reflected SV wave,
SZ(SV). In fact, the z-components of the slowness vectors of the
reflected P and SV waves, SZ(P) and SZ(SV), for an incident P wave
which determines the value of b in Eq. (16) and which travels in the
plane x = 0 in the transversely isotropic medium, can be obtained from
the lengths of the perpendicular lines between the abscissa represent-
ing the value of b and the interesections with two sheets of slowness
surface for the reflected P wave and the reflected SV wave, respec-
tively, as shown in Fig. 3. It is apparent from Fig. 3 that the
z-component of the slowness vector of the reflected P wave, SZ(P), is
less than that of the reflected SV wave, SZ(SV), for an incident P
wave travelling in the plane x = O in the unidirectional fiberglass
epoxy composite under consideration [l1]. Consequently, the angle of

reflection of the reflected SV wave fgy defined similarly to Eq. (18)

as
bgy = tan"l (5,(5V) /s, (SV)y, (20)

is smaller than the angle of reflection of the reflected P wave, from
Eqs. (16), (18) and (20). The angle of reflection of the reflected SV
wave as a function of the angle of incidence of an incident P wave
travelling in the unidirectional fiberglass epoxy composite [1] is

shown in Fig. 4.

15




The critical angle is defined as the angle of incidence of an
incident P wave at which the slowness vector of the reflected SV wave
(or P wave) becomes tangent to the plane boundary where the reflection
occurs. For the case of an incident P wave travelling in the unidirec-
tional fiberglass epoxy composite in Fig. 1, it has been shown that
the angle of reflection of the reflected SV wave is smaller than that
of the reflected P wave. Thus, the critical angle phenomenon does not
occur for the unidirectional fiberglass epoxy composite under consid-
eration. This is due to the fact that when the angle of incidence of
an incident P wave reaches 90°, the angle of reflection of the

reflected SV wave is still less than 90°.

4. Amplitude Ratios of Reflected Waves to Incident Wave

It has been shown that when a P wave travelling in a semi-
infinite transversely isotropic medium is incident on a plane bound-
ary, a P wave and an SV wave will be reflected. The boundary condi-
tions on the stresses of a P wave travelling in the plane x = 0 and
incident on the plane boundary can be obtained from Egs. (4) and (7)
as

ror (D) + ,yz(SV) + ,yz(P) =0 (21)

y

T

zz(I) + 7'zz(sv) + ’zz(P) =0

16




where Tyz(I) and ’zz(I) represent the shear and normal stresses
associated with the incident P wave; Tyz(SV) and TZZ(SV) represent
the shear and normal stresses associated with the reflected SV wave;
and Tyz(P) and TZZ<P) represents the shear and normal stresses

associated with the reflected P wave.

The shear stress, ryz(I), associated with a P wave of unit
amplitude travelling in the plane X = 0 and incident on the plane
boundary at the origin, as shown in Fig. 2, can be obtained from

Egqs. (3) and (6) as
Tyz<I) - iw(CSSSZ(I)Py(I) + c553y<1)Pz(1)) (22)

where Sy(I) and SZ(I) are the components of the slowness vector of the
incident P wave along the y and z axes, respectively; Py(l) and PZ(I>
are the components of the unit vector of particle displacement of the
incident P wave along the y and z axes, respectively; Cgs5 is an elas-
tic constant; and w is the frequency. Similarly, the normal stress,

T

zz(I)’ associated with the incident P wave of unit amplitude can be

expressed, from Egs. (3) and (6), as
7,. 1) = iw(Cl3Sy(I)Py(I) + €338, (Dp, (1)) (23)

where Cq3 and C33 are elastic constants.




The shear stress, Tyz(P), and the normal stress, Tzz(P)v

associated with the reflected P wave on the plane boundary at the ori-

gin are, from Eqs. (3) and (6),

ryz(®

I

iwA(P)(CSSSz(P)Py(P) + c55sy(P>Pz<P>) (24)

and

Tzz(P)

[}

10A(B) (0138, (PIp (B) 4 gq35 (B)p (B)), (25)

where Sy(P) and SZ(P) are the components of the slowness vector of the
reflected P wave along the y and z axes, respectively; Py(P) and
PZ(P) are the components of the unit vector of particle displacement
of the reflected P wave along the y and z axes, respectively; and

A(F) is the amplitude of the reflected P wave.

The shear stress, Tyz(SV), and the normal stress, TZZ<SV),
associated with the reflected SV wave on the plane boundary at the

origin, from Eqs. (3) and (6),
Tyz<5V) - iwA(SV)(CSSSZ(SV)Py(SV) + csssy(SV)PZ<SV>) (26)
and

T

V) - iwA(SV)(Cl3Sy(SV)Py(SV) + C335,(SVIp (5V)y -~ (27)

where Sy(SV) and SZ(SV)~are the components of the slowness vector of

18




_

the reflected SV wave along the y and z axes, respectively; Py(SV) and

PZ(SV) are the components of the unit vector of particle displacement
of the reflected SV wave along the y and z axes, respectively; and

A(SY) is the amplitude of the reflected SV wave.

Upon substitution of Eqs. (22) through (27) into Eq. (21), the
boundary conditions on the stresses for an incident P wave of unit

amplitude travelling in the plane x = 0 can be rewritten as

SZ(I)py(I) + sy(I)pz(I) + A(P)(SZ(P)py(P) + Sy(P)pz(P))

+ AV (5, (SVIp (SV) 4 5 (SVp (SV)) g

(Cl3sy(I)Py(I) + c33sz(1)pz(1))
+ A(P)(Cl3sy(P)Py(P) + C338,(P)p,(P)) (28)
+ A(SV)(C13Sy(SV)Py(SV)

+ C33SZ<SV)PZ(SV)) =0

The components of a unit vector of particle displacement along

the y and z axes of a P wave travelling in any plane containing the
zonal axis of a transversely isotropic medium are given in [3], and

can be expressed, when applied to the present case of the reflected P

wave travelling in the plane x = 0, as [3]

19




2
Py(P) = [Hp - (C33-C44)SZ(P)‘]/

([Hp- (C33-C44) S, ()%

2 1/2
+ [(Cl3+C44)Sy(P>SZ(P>] } /
(29)

p,(P) - (cl3+c44)sy(P>sz<P>/
([Hp—(C33-C44)SZ(P)2]2
2 1/2
} /

+ [(C13+044)Sy(P)SZ(P)]

where Cy3, C33 and C4y are elastic constants; and Hp is defined as

2 2
Hp = {(011-044>Sy(P) + (C33-C44)8, P

+

2
{[(011‘C44)5y(P)

2 2
(C33-C44)8, (B

+

2 2
45y (P75, (P [(C11-Cus) (C33-Cus)

- (C13+C4) 21212y /2.
Similarly, the components of a unit vector of particle displacement

along the y and z axes for the reflected SV waves travelling in the

plane x = 0 can be expressed as

20




2
Py(SY) = (Hgy - (C33-C44)s 5V 71/

22
([Hgy - (C33-C44)8,5V)7]

2 172
} / (30)

+

[(C13+C44) Sy SVs, SV

p, (SV)

(C13+C44) 8y SV s, (5V)/

22
([Hgy - (C33-C44)5,(5V)7]

2)1/2

+

[(C13+Ca4)sy(sv)sz(sv)]

where Hgy is defined as

2 2
Hgy = {(Cll-Caa)Sy(SV) + (C33-C44)SZ(SV)
SVY2 4+ (Can-Cun)S, (SV)2,2
- {[(Cll-caa)sy( ) (C33-Cp4)5,(SV) %

2 2
- 4Sy(SV) 5,57 [(C11-Cs) (€33-Coa)

22172
- (C13+Cgy) 1 )} }/2.

The amplitude ratios of the reflected P and SV waves, A(P) and
A(SV), for a P wave of unit amplitude obliquely incident on the plane
boundary can be determined from Eq. (28). For a given incident P
wave, the values of the components of the slowness vector along the y
and z axes, Sy(I) and SZ(I), and the values of the components of the

unit vector of particle displacement along the y and z axes, Py(I) and

21




EZ(I), are defined as part of the the‘specification of the incident P
wave. The values of the components of the slowness vector of the
reflected P wave along the y and z axes, Sy(P) and SZ<P>, are
determined from Eqs. (16) and (17), respectively. The values of the
components of the unit vector of particle displacement along the y and
z axes for the reflected P wave, Py<P) and‘PZ(P), are obtained by
substituting Sy(P) and SZ(P) into Eq. (29). The values of the
coefficients for A(P) in Eq. (28) are thus obtained. Since the y-com-
ponent of the slowness vector of the reflected SV wave, Sy(SV)’ is
equal to that of the incident P wave, Eq. (16), the value of the
z-component of the reflected SV wave, SZ(SV), is obtained by substi-
tuting Sy(I) into the slowness surface for the SV wave, Eq. (15). On
substitution of the values of the SZ(SV> and Sy(SV) into Eq. (30), the
values of the unit vector of particle displacement along the y and z
axes for the reflected SV wave, Py(SV) and PZ(SV), are determined.

The values of the coefticients for A(SVY) in Eq. (28) are thus
obtained. The values of the amplitudes of the reflected P and SV
waves, a(P) and A<SV), are then obtained by solving Eq. (28) with the
thus determined values of the coefficients for A(F) and A(SV) ip Eq.
(28) for a given incident P wave. By varying the angle of incidence
of the incident P wave of unit amplitude and by repeating the proce-
dures described above, the amplitude ratios of the reflected P and SV
waves to the incident P wave are obtained as functions of the angle of

incidence. For an incident P wave in the unidirectional fiberglass

22




epoxy composite shown in Fig. 1, the amplitude ratios of the reflected
P and SV waves to the incident P wave versus the angle of incidence

are shown in Fig. 5.

5. Balance in Energy Flux Normal to Plane Boundary

The balance in energy flux normal to the plane boundary z = O,

as shown in Fig. 2, must be satisfied and is expressed as (2]
F,(D) + F,(B) + 7, (8V) 0 (31)

where FZ(I), FZ(P) and FZ(SV) are the z-components of the energy
fluxes of the incident P wave, the reflected P wave and the reflected

SV wave, respectively.

The z-component of the energy flux of an incident P wave of unit

amplitude travelling in the plane x = 0 is [4]

2
FZ(I) = wz(caapy(l) SZ(I) + C13Py(I)Pz(I)Sy(I)

2
+ CaaPy(I)Pz(I)Sy(I) + Cq3P,(D) 75, (1)) (32)

where Py(I) and PZ(I) are the components of the unit vector of

particle displacement of the incident P wave along the y and z axes,

23




respectively; Sy(I) and SZ(I) are the components of the slowness
vector of the incident P wave along the y and z axes, respectively; w

is the radian frequency; and C13, C33 and C4y are elastic constants.

Similarly, the z-components of the energy fluxes of the

reflected P wave and the reflected SV wave are [4]

2 2
FZ(P) = a(P) wz(caapy(P) SZ(P) + C13Py(P)Pz(P)Sy(P)

2
+ C44Py(P)PZ<P)Sy<P) + Cq3P,(P)7s (P)) (33)

and

2 2
£, (SV) o A(SV) wZ(CAAPy(SV) 5, (SV) 4 cl3Py(SV)PZ(SV)Sy(SV)

2
+ c44Py<SV>PZ<SV>sy(SV> + C33P, (SV) 75, (SV)) (34)

Since the frequency term w? is common to Eqs. (32), (33) and
(34), the balance in energy flux normal to the plane boundary,

Eq. (31), is not affected by assuming the value of the frequency w to
be equal to unity. Accordingly, subsequent calculations of the values
of the z-components of the energy fluxes of the incident P wave and

the reflected P and SV waves, FZ(I), FZ(P) and FZ(SV), are done by

assuming the radian frequency w to be equal to one.
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The values of the z-components of the energy fluxes in
Eqs. (32), (33) and (34) are obtained similarly to the calculations
of the amplitude ratios of the reflected P and SV waves to the inci-
dent P wave. For a given incident P wave of unit amplitude, the
y-components of the slowness vectors and of the unit vectors of par-
ticle displacement, Sy(l), Sy(P), Sy(SV)’ Py(I), Py(P) and Py(SV)' and
the z-components of the slowness vectors and of the unit vectors of
particle displacement, SZ(I), SZ(P), SZ(SV), PZ(I), PZ(P) and PZ(SV)
of the incident P wave and of the reflected P and SV waves are deter-
mined first. Then, combining the amplitudes of the reflected P and SV
waves, ACP) and AGSY), yith the values of sy(1), s, (B), s SV 5 (1),
Sz(P>' SZ(SV), py(I), py(P), py(SV), pz(I), pz(P) and pZ(SV), the
values of the z-components of the energy fluxes of the incident P wave
and the reflected P and SV waves, FZ(I), FZ(P) and FZ(SV), are thus
obtained from Eqs. (32), (33) and (34). For a P wave of unit ampli-
tude travelling in the plane x = 0O in the unidirectional fiberglass
epoxy composite shown in Fig. 1 incident on a plane boundary, the
z-components of the energy fluxes of the reflected P and SV waves and
the energy flux of the incident P wave are shown in Fig. 6 with the
value of the frequency w in Eqs. (32), (33) and (34) equal to one. The
balance in energy flux normal to the plane boundary, Eq. (31), is also

checked and is shown in Fig. 6.
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ACOUSTO-ULTRASONTIC NON-CONTACT INPUT-OUTPUT CHARACTERIZATION OF UNIDI-

RECTIONAL_FIBERGLASS EPOXY COMPOSITE PLATE

It has been shown [1] that the unidirectional fiber composite
shown in Fig. 1 may be modelled as a homogeneous transversely iso-
tropic continuum. For the axes shown in Fig. 1, the isotropic plane
of its equivalent continuum lie in the midplane of the plate [1]. A
cartesian coordinate system (x, y, z) is chosen so that the x-y plane
is the isotropic plane; as a result, the upper and the lower surface
are at z = h/2 and z = -h/2, respectively, where h is the plate thick-
ness. Thé properties of the equivalent continuum model of the unidi-

rectional fiberglass epoxy composite plate to be considered are [1]

h = 0.1m

C11 = 10.581 x 10° N/m?

C13 = 4.679 x 107 N/m?

C33 = 40.741 x 107 N/m? (35)
Chy = 4.422 x 109 N/m?

Cgg = 3.243 x 109 N/m?

p = 1850 kg/m3

A transmitting and a receiving transducer are located on the
same face of the unidirectional fiberglass epoxy composite plate spe-

cimen without direct contact, as shown in Fig. 7. The unidirectional
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fiberglass epoxy composite plate specimen shown in Fig. 7 is consid-
ered as a plate of thickness h and of infinite planar (x-y) extent.
The input electrical voltage to the transmitting transducer is V;(t)
and the output electrical voltage from the receiving transducer is
V(1) where t represents time. The transmitting transducer converts
an input electrical voltage into a stress, whereas the receiving
transducer converts a displacement associated with stress waves trav-
elling in the plate into an output voltage. In the following analy-
sis, only the P waves are traced. The P waves which are generated by
the transmitting transducer located above point O experience multiple
reflections at each face of the plate, and then reach the receiving
transducer located above point M, as shown in Fig. 8. Since the iso-
tropic plane lies in the midplane and is parallel to both the top and
the bottom faces where the multiple reflections occur, the angle of
reflection of the reflected P wave is equal to the angle of incidence
of an incident P wave for each reflection at each face of the plate.
Accordingly, the P wave travelling from the input O to the output M
may be considered as a wave propagating in a semi-infinite trans-
versely isotropic medium, and travelling to point M' as if there were

no bottom face, as shown in Fig. 8.

1. Delay Time and Phase Velocity

Let the input O and the output M lie in the y-z plane. Assume
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the number of reflections at the bottom face experienced by the P
wave in travelling from the input O to the output M is n, as shown in
Fig. 8. With respect to the z axis, the angle of incidence of the P
wave at each face of the plate is §, and the total distance travelled

by the wave is R,. From the geometry in Fig. 8,

6 = tan"l(2/2nh) (36)
where £ is the separation distance between the input O and the output
M, and

R, = £/sinf (37)

The time delay t, for the wave to reach the receiving transducer is

tn = Rp/C1(6) (38)

where C1(4) is the directionally dependent phase velocity of the P
wave. The phase velocity Cy of a P wave in the unidirectional fiber-

glass epoxy composite shown in Fig. 1 is given as [1]
C1(8) = [(C4y*C1q sin28 + C3y cosZd + JE)/2p]1/2 (39)

where
- - in2 - 25412
E [(Cll Cq44) sincd + (Cyy-C33)cos“h]

+ 4(C13+C44)2 sin29 C0529 ;
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C11» C13, C33, C44 and p are given by Eq. (35).

The delay time is then computed when the number of reflections n
at the bottom face of the plate is equal to 10, 100, 300 or 500. The
numerical results are shown in Fig. 9 where the delay time t, is
plotted as the ordinate, and the dimensionless separation £/h is
plotted as the abscissa, for values of zero to 300. The phase velo-
city C1 as a function of the angle of incidence # is also shown in

Fig. 10.

2. Displacements Detected by Receiving Transducer

The displacements detected by the non-contact receiving trans-
ducer above point M, radiated by the non-contact transmitting trans-
ducer, are assumed to be equivalent to the displacements at point M’
associated with the P wave propagating in a semi-infinite transversely
isotropic medium as if there were no bottom boundary (except for the
cumulative effect of the reflection coefficient), as shown in Fig. 8.
The displacements at point M’ are approximated by the far-field asymp-
totic solution for large R, of an infinite transversely isotropic

medium subjected to a harmonic point load.

Consider an infinite transversely isotropic medium in which the

z axis of a rectangular cartesian system 0(x, y, z) is the zonal axis
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of the medium and the x-y plane coincides with the isotropic plane,

shown in Fig. 11.

are [5]

+ 7 + Ty, » + pX

r
XX, X XY,y ,

T + 7 + 7 + pY =

Xy,X Yy.y yz,z

il

Txz,x + Tyz,y + Tzz,z + pZ

where 7.5 (r, s = x, y and z) are the

as

The equations of motion including the body forces

pu, tt (40)
PV, tt (41)
oW, tt (42)

normal (r = s) and shear (r = s)

stresses with respect to the chosen coordinate system O(x, vy, z); u,

v and w are displacement components of a point in the medium along the

X, ¥y and z axes, respectively; X, Y and Z are the components of the

body force along the x, y and z axes respectively; p is the density; t

is time; and "," denotes partial differentiation with respect to the

variable which follows.

Combining Egs.

- (13t

Toee = - ) Bizg + -

C
+ -—22 r

== Topp + 2

'Z

where I and A are given by [5].
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' =w,z; A =1uX + Vv,y.

By differentiatiﬁg Eq. (40) with respect to x and Eq. (41) with
respect to y, we find upon addition of the resulting equations and

using the appropriate stress-strain relations, Eq. (1), that

C12+C C
A, tt = (—l%——éé) (T',xx + T,yy) +--—%L-+ A,zz
C11
+-j;— (A,xx + A,yy) + X,x + Y,y (44)

For a harmonic point load at the origin, the body forces may be

taken of the form [5]

P
L}

X6 (x)6(y)6(z)e 10t

=4
]

Y 8 (x)6(y)8(z)e" 10t (45)

Z = Z6(x)6(y)6(z)e 19t
where §(r) (r = x, y and z) is the Dirac delta function; and X,, Y,

and Z, are the magnitudes of the respective point body forces.

Express ' and A as threefold Fourier integrals [5] as follows.

31




'(x,y,z,t) = JI[ T (Sx,Sy,Sz,t)

exp({iw(Syx+S,y+S,z-t)}dS.ds
xXTOyyToz X

A(X,y,z,t) = JJJ Z(sx,sy,sz,c)

exp{iw(Syx+S,y+S, z-t))dS,ds
xXTOyY¥oz X

ydSz (46)

ydS,

where

@D
I(Sg,Sy,S;,t) = 1/8x3 J[[ I(x,y,z,t)

exp{iw(—SXx-Syy—SZz+ t) )dxdydz.

A(Sy,Sy,S,,t) = 1/8x3 J[[ A(X,y,z,t)

exp{iw(-SXx-Syy~Szz+ t) }dxdydz.

Similarly, X,x, Y,y and Z,z can be expressed as threefold
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Fourier integrals [5]

@
X,x = iwSy JJJ X exp(iw(Sgx + Syy + Szz - t))dSydSyds, (47
- +]

]
Y,y = iuwSy JJJ Y exp(iw(SyX + Syy + Spz - t))dSydSyds,  (48)
@©

@
Z,z = iwS, Jj Z exp(iw(Sgx + Syy + Szz - t))dSydSyds,  (49)
@K

where

X = 1/8x3 JJJ X8 (x)6(y)6(z)e 1wt

-0

exp{iw(-Sgx - Syy - S,z + t}dedSdeZ
= X0/81r3

and, similarly,

— Yo — Zo

Substitution of Eqs. (45) through (49) into Egs. (43) and (44)




gives

Con/p (S52+5,2) + C33/p §,2-1
8r° WH (S,

(iSy X, + 1S
) x%o y

YO) +

Sy,

-(C13+Cyy) /P (SX2+Sy2)

is
87> wH (S, Sy, Sz)

2Zo (50)

- (C13+C44) /o 52
= 13" a4 S (i5X, + iSyYg) +
87 WH (Sy, Sy, Sp)

C11/p (Sx? + 5,2) + C33/p 5,2 - 1

is. z (51)
8x° WH (Sy, Sy, Sp) 2o
where
[ Cus .9 C11 9. . 9
H<SX’Sy’SZ) = ——p— SZ +'-—"p—— (Sx +Sy y - 1

Cuy 2 2 C33 )
*;~ (SX +Sy ) +-—;— SZ -1

2
C44+C
(—-;—-13> 5,2 (55245,2) . (52)

In fact, H(Sg, Sy, S,) = 0 represents two sheets of the slowness
surface, one for a P wave and one for an SV wave [5]. As a result of

Eqs. (50) and (51), T and A in Eq. (46) can be written as
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8

- (C13+C44)/p S5°
T (x,y,z,t) = (1S4 Xo+1SyY,)
(3.2,6) J J { 8r3uH(Sy,8y,8,) o T °

8

C11/p (5x2+Sy2) + C33/p S, - 1 sz
873wH (S, Sy, S;) zro
exp {iw(Sxx+Syy+Szz-t)}dSXdSdez (53)

8

2,52 2

c S, 2+8,2) + C 5,2 - 1

A(x,¥,Z,t) = s/ Cx - ) * C33/¢ 5 (1S, X, +1S,Y,)
8r wH(Sy, Sy, 57) y

8

2 2
N -(Cl3+C44)/p (SX +S:{ ) ‘s 7 :I
3 z%o

8n wH(SX,Sy,Sz)

The asymptotic solution at a large distance from the point load is
obtained by applying the theory of residues, the method of stationary

phase, and the radiation condition [5] as

coF g Leo*
(iSx Xo+iSy Yo)

AW -(C11q+Cps)
Fx.y.z,6) ~ D { 13+C44) g%

27R p

C11 , *2, *2 C33 *2 ¥
+ (—p— (SX + Sy ) +7 SZ - 1)lSz ZO
exp(in(Syx + Syy + Sz - ©)) (55)

27R P
-(C14+Cyp)
+ 137044

Anw C C X
AGR,Y,Z,t) ~— {E—ié—(5§2+ sy + 23 Sy32- 1](iSy X+iSy ¥o)

*2 %2 . %
(54 + Sy ) is, Zo}

p
* * *
exp{iw(Syx + Syy + S,z - t)) (56)
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where R 1is the distance from the origin O where the point loads are
applied to the location of interest Q in the medium, as shown in

* ok *
Fig. 11; (Sg, Sy, S,) are points on the slowness surface for a P wave

where the normal is parallel to the 0Q direction: Ap is the amplitude

coefficient and is given by

2 2
N H’SX + H’Sy

2 2
Z[H, sz (H,sxsx Hisysy-Hisgsy) +

1/2
+ H?SZ

(57)
ZHfoH’Sy(H'SszH'SySz'H’SxSyH’SzSz)]

where ¥ is the sum with respect to cyclic permutation of Sx» Sy and
* * *
S,, and is evaluated at points (S, Sy, S;) on the slowness for a P

wave where the normal is parallel to the 0Q direction.

The displacement components along the x, y and z axes, u, v and
w, due to a P wave can be obtained by direct integration of the defi-

nitions of I' and A in Eq. (43), and are given as [6]

S

X
u = A
10(Sx2+5,2)
S
v = 7 A (58)
iw(Sx2+Sy2)
1
W= r
inz
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Substitution of Egs. (55) and (56) into Eq. (58) gives the
asymptotic solutions at a large distance of the displacement compo-

nents along the x, y and z axes, u, v and w, as follows:

*
-i), S c ,
w - o Sx (532 syP) + 2 €33 §%2 1y(is¥ x, + is) Y,)
*2 %2 P
27R(S "+ Sy )
~(C13+Chy) | %2 x2. . *
P (S + Sy0) 1S, 2
. * * *
exp{iw(Sgx + Syy + S,z - t)) (59)

-ix S Cuu * * * *
v o A Sy {[ : (532 + 832y + 23 2. 1Sy X, + 1Sy Yo)
2WR(S + Sy )
-(Cq11+Cpy)
___lé__éﬁ_(s + s ) s A }
P
. * * *
exp(lw(Sxx + Syy + S,z - t)} (60)
A -(C + Cupyp)
n 13 * C4s) & % *
W o~ o [ > S, (S¢ Xy + Sy Y,)
€11 *2, C33 _*2
R R
exp(iw(Six + S;y + S:z - t)) (61)
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The slowness surface for a P wave travelling in the unidirec-
tional fiberglass epoxy composite shown in Fig. 1 is an cblate sphe-
roid. See Fig. 3. Thus, if (x, y, z) are the coordinates of a given
point in the medium, there will be only one P wave front passing

* % %
through it, corresponding to a point (S, Sy, Sz) on the slowness
surface where the normal is parallel to the given direction. There-
fore, it is concluded that for the displacement components along the
X, y and z axes, u, v and w, measured by tracing the P wave in the
unidirectional fiberglass epoxy composite plate specimen at point M in
* % *

Fig. 8, there is only one point (Sy, Sy, S,) on the slowness surface

where the normal is parallel to a given direction OM’' [5].

3. Directivity Function

The shear stress Tyz and the normal stress r,, associated with
the P wave reaching the point M’ in Fig. 8 are used to study their
associated directivity functions. The asymptotic shear stress Tyz and
the asymptotic normal stress 7,, are obtained by.substituting

*

Eqs. (55) through (58) into Eq. (1) and then by setting Sy equal to

Zero as
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Apw -(C13%C44) | % %2
—_— 45T S

Tzz ~ 27R (€33 r y Sz Yo
C c c
11 _*2 33 *2 * 44 *2
+ (T Sy + '-p-— SZ - 1) iSz ZO] + C13 [(T Sy
C33 _*2 ¥ -(C13+Ch4) | %2 %
+—5= 57 1) 1Sy Yo) + —————15y'S; Zo])
exp{iw(S;y + 55z - t)) (62)
Cecdw -(C1a+Chs)
55*n 13%C44) | %2 _*
~ S
Tyz Py { > isy S, Yo
C11 _*2  C33 _#*2 ok Cut %2
+ (_P— Sy +T— SZ -1 lSy ZO + ( ) Sy
C33 _*x2 Lo* -(C13%C44) | x  _*2
=250 1) 1S, Vo) 4 18y S,°Z)
exp{iw(S;y + S:z - t)) (63)

The directivity functions associated with the normal stress 7.,
in Eq. (62) and the shear stress Tyz in Eq. (63) will be evaluated.
Due to the axial symmetry with respect to the zonal axis, the z axis,
of the transversely isotropic medium, the values of the directivity

functions obtained for the case Sy = 0 hold for all values of Sg .

39



Consider the case of the point load acting along the y direction

only; that is, Y, # O but X, = Z, = 0 in Eq. (45).

Y
The directivity function Dyz of the shear stress Tyz associated
with a P wave whose slowness vector is confined to the plane x = 0 is
obtained from the amplitude of the shear stress in Eq. (63) by setting

Yo = R = 1;

*
. A0Cr S -C c
-DY _n“b4457 713 S*Z+ 33 *2

vz - — y > S;7- 1 (64)
where A, 1s given in Eq. (57) and is evaluated at the point (O, Sy,
* * %
S;) on the slowness surface for a P wave, Eq. (14); (O, Sy, S;) 1s the

point on the slowness surface where the normal is parallel to the
given direction and w is radian frequency. Similarly, the directivity

Y
function D,, of the normal T,z is, from Eq. (62), for Y, = R = 1;

*
Y ApwS C13C44 %2 C33C44 *2
D,, = 2"y [ - Sy~ p s,“- C13] (65)

Next, consider the case of the point load acting along the z

direction only; that is, Z, » 0, but Xo = Y5 = 0 in Eq. (45).

y4
The directivity function Dyz of the shear stress Tyz associated

with a P wave whose slowness vector is confined to the plane x = 0 is
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obtained from the amplitude of the shear stress in Eq. (63) by setting

Zo = R =1,

*
z _ AnCasSy C11 %2 C33-C44-C13 %2
1\ + —— S

yz on P y p z

-1 (66)

Z
Similarly, the directivity function D,, of the normal stress 7,, is,

from Eq. (62), for Z, = R = 1;

* 2 2
A ALwS €11€33-C113C44-C1 * C33 *9
pZ, - n“°z ( 11%3 13 3 sy2+ 3 S¥2 . Cy9) (67)
: 2n P ’ P

The polar diagrams for the directivity functions of the shear
Y Y Z . .
stress Tyz and the normal stress 7., (Dyz, Dy, Dyz and D,, given in
Eqs. (64) through (67)) associated with the P waves propagating in the
unidirectional fiberglass epoxy composite shown in Fig. 1 are obtained

by substituting Eq. (35) into Egs. (64) through (67) at frequencies of

0.75, 1.50 and 2.25 MHz.

Numerical results are shown in Figs. 12 through 23 where the
angle of incidence 4§ given in Eq. (36) is used to determine the
* %
direction for which the value of a point (O, Sy, S,) on the slowness

surface where the normal is parallel to the given direction is thus

obtained.
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4. Assumptions on the Transducers

The non-contact transmitting transducer in Fig. 7 is assumed to
transform an electrical voltage into a uniform stress; however, the
non-contact receiving transducer in Fig. 7 transforms a displacement
into an electrical voltage. The approach below is similar to that

given in [7].

Referring to Fig. 7, if an input voltage of amplitude V and

frequency w is applied according to

Vi(t) = Ve-lwt (68)

the stress o that is introduced into the specimen plate by the

non-contact transmitting transducer is

a(t) = Fp(w)Ve i(wt + é1) (69)

where Fj(w) is the transduction ratio for the non-contact transmitting
transducer in transforming a voltage to a stress and ¢ is a phase

angle. In Eqs. (68) and (69), the harmonic character of the signals
is expressed in the complex notation where i= /?I and only the real
parts of these and subsequent equations should be considered. Thus,

the amplitude T of the applied force is defined as
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T = Fp(w)V (70)

Similarly, if a stress wave producing a displacement d of ampli-

tude D and frequency w that is detected by the non-contact receiving

transducer is defined as

d(t) = De-lwt (71)

the output voltage from the non-contact receiving transducer, see
Fig. 7, is

-i(wt + ¢2)
Vy(t) = Fy(w)De (72)

where Fo(w) is the transduction ratio for the non-contact receiving
transducer in transforming a displacement to a voltage, and ¢, is a

phase angle. Thus, the amplitude V’ of the output electrical voltage

is

VvV = Fz(w)D (73)

The characteristics of Fj(w) and Fp(w) are unknown except that

the dimensions of the product Fj(w)Fy(w) are [kg/mzosecz].




5. Steady-State Qutput Voltage Amplitude due to Multiple Wave Reflec-

tions in a Plate

Since the P wave traced in the unidirectional fiberglass epoxy
composite plate specimen shown in Fig. 8 is travelling in the y-z
plane, it follows from Eqs. (59), (60) and (61) that only the dis-
placement components along the y and z axes, v and w, are detectable
at the point M'. Consider first the point load acting along the y
direction only; that is, Yo, # 0, but X, = Zo = 0 in Eq. (45).

The amplitude of the y-component displacement Dz evaluated at

the point M’ can be obtained from Eqs. (37) and (60) as

* %
Y fl(sy'sz) .
Dy = ——— ¥, (74)
Rn

* % *2 *2
where £1 (Sy,8;) = Oy/27)|(C4a/p)Sy + (C33/p)S, -1|. Similarly, the
Y
amplitude of the z-component displacement D, evaluated at the point M’

can be obtained from Eqs. (37) and (61) as

* %
Dy = ————— Y, (75)
Rn
* % * %

where £5(Sy,5,) = (An/27)[(C13+C44)/p1SyS, .
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Next, consider the point load acting along the z-direction only;

that is, Z5 # 0, but X5 = Y, = 0 in Eq. (45).

Z
The amplitude of the y-component displacement D,, evaluated at

the point M' can be obtained from Eqs. (37) and (60) as

* %
Dy = —— 7,

Ry

(76)

evaluated at the point M' can be obtained from Eqs. (37) and (6l) as

* %
z  £3(Sy,8,)
D, = ————— Zg

Rn

(77)

* % *2 *2
where £3(Sy, S;) = (An/2m)|(C11/p)Sy +(C33/P)S, -1].

Finally, consider the point load acting along the x direction
only; that is; X, # 0, but Y, = Z, = 0 in Eq. (45). It follows from
Eqs. (60) and (61) that the amplitude of the y-component displacement
and the amplitude of the z-component displacement vanish at the point

M'. This is due to the fact that the P wave is travelling in the y-z

plane.

According to Eqs. (74) through (77), the amplitude of a displa-

cement component at the point M’, denoted as Dy, can be expressed in
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the following form as

* *
£1(Sy,Sz)
Dyt = ——2—" T (78)
Rp

where T 1is the applied point load and is equivalent to either Y, or
* %

Zo, in Egs. (74) through (77); and fi(Sy,Sz) (i=1,2 or 3) is determined

from one of the Egs. (74) through (77),-depending on which displace-

ment component is measured and along which direction the point load is

applied.

However, with the bottom boundary present, the wave is reflected
a total of (2n-1) times, as shown in Fig. 8. Thus, the amplitude of
displacement at the point M is Dy and is expressed as

2n-1
Dy = Qpp Du (79)

where Qpp is the amplitude ratio of the reflected P wave to the
incident P wave, as shown in Fig. 5, and is a function of the angle of

incidence § defined in Eq. (36).

Here, we have ignored the effects of mode conversion. The ampli-
tude of the output voltge from the non-contact receiving transducer is
V' and can be obtained by substituting Eqs. (78) and (79) into Eq.

(73) as
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2n-1 * %
Fo(w) Qpp £1(Sy,Sz)T

Rp

Substitution of Eq. (70) into Eq. (80) gives

2n-1 % %

Fi(w) Fp(w) Qpp £i(Sy, Sz)V
V' _ pp 1 y 4 (81)

Rn

Introducing the P wave attenuation constant o« of the unidirectional
fiberglass epoxy composite and a possible electrical signal amplifica-
tion factor K, Eq. (8l) can be written as

- * e~ Ry

2n-1

Eq. (82) gives the output voltage amplitude from the non-contact
receiving transducer due to an input voltage amplitude V at the non-
contact transmitting transducer when the P wave path has undergone n

reflections from the bottom face of the unidirectional fiberglass

epoxy composite plate specimen, as shown in Fig. 8.




DISCUSSION AND CONCLUSION

In the acousto-ultrasonic input-output characterization of the
unidirectional fiberglass epoxy composite plate specimen, the angle of
reflection of the reflected P wave is equal to the angle of incidence
of the incident P wave for each reflection at either the top or the
bottom face of the plate. This is due to the fact that the isotropic
plane is parallel to both faces of the plate. However, if the paral-
lelism between the isotropic plane and the plane boundaries where
reflection occurs does not exist, the angle of reflection is not equal
to the angle of incidence. In this case, the use of a semi-infinite
transversely isotropic medium, neglecting the existence of the bottom
face of the plate specimen except for the cumulative reflections, to
compute the delay time, the displacement and the directivity functions

becomes inappropriate.

It is observed from Fig. 9 that an increase in the number of
reflections n results in a minor increase in the delay time t, at
each value of the dimensionless separation £/h. For a given plate
thickness h and a given the separation distance £ between the trans-
mitting transducer and the receiving transducer, an increase in the
number of reflections n results in a decrease in the angle of inci-
dence #, as given by Eq. (36), thereby increasing the travelling

distance Ry, from Eq. (37). The phase velocity C1 of a P wave in
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the unidirectional fiberglass epoxy composite increases with decreas-
ing angle of §, as shown in Fig. 10. For the time delay, the increase
in the travelling distance R, is partiy offset by the increase in the
phase velocity Cq with an increse in the number of reflections n.
This accounts for the minor increase in the delay time given by Eq.
(38). However, in an isotropic medium, the phase velocity of a stress
wave is directionally independent. As a result, the increase in the
dealy time t, caused by an increase in the number of reflections n is
solely attributed to the increase in the travelling distance R, in an
isotrpic plate. Therefore, it is concluded that the directional
dependence of the phase velocity of a stress wave travelling in a
transversely isotropic medium has a significant effect on the delay

time when conducting acousto-ultrasonic testing.

Now, consider the case of a given number of reflections n. An
increase in the separation distance £ results in an increase in the
travelling distance R,, as shown in Fig. 8, and an increase in the
angle of incidence # given by Eq. (36). An increasing angle of inci-
dence @ results in a decreasing phase velocity Cjp, as shown in
Fig. 10. Consequently, the delay time tj increases sharply as a
result of the increasing separation distance £ for a given number of
reflections n, as shown in Fig. 10. However, as the separation dis-
tance £ approaches infinity, the phase velocity approaches a limit.

Thus, (for £/h-w) the increase in the delay time t, is due solely to
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the increase in the travelling distance R,, which is similar to the

isotropic medium case.

This theoretical investigation provides a step forward in the
quantitative understanding of acousto-ultrasonic nondestructive evalu-
ation (NDE) parameters such as stress wave factor (SWF) in trans-
versely iostropic media. It also provides the potential for assisting

in the development of more efficient and more revealing NDE schems

utilizing wave propagation.
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Fig. 1 Unidirectional fiber reinforced composite modelled as
transversely isotropic medium.
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Fig.

2
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incident P wave
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Slowness vector of
reflected SV wave

Slowness vector of
reflected P wave

Coordinate system (x,y,z) in analysis of single reflection
problem at stress-free plane boundary of semi-infinte
transversely isotropic medium; z=0 is plane boundary where
single reflection occurs, z<0 is free space, and x=0 is

plane of incidence.

53




‘Jueapenb z-£ aa131sod 107 a31sodwod

Axod® SSeT819qTJ TBUOTIDDITPIUN UT SDABM AS PUB ( 40J $20BJINS SSIUMOTS JO S3I29Yys om] €

(wy/s)Ag ‘uoidaaip A Ul 10428A SS3AUMO|S O juauodwo)
000’| 0GL0 00S'0 0G20|le— qa —»|0

*

| 0 o

[ | / | / | S
3

¢ | —{sz10 @

/ S

_ —

/_I.I_I_,A&VNW nuuf

2 —062°0 i

g

4 mw w

—gle0¢ &

x <

. 38

¢ ~ o

/ —00S0 =

3

n VAN N

2o (AS) . a

215290 a

(9]

3ADM AS 10} 30D}4NS SSIUMOIS : 2 = W
3ADM d 10} 8ID}UNS SSAUMOIS : | k=

— 0620

54




‘91Tsodwod Axode sse]813qIJ TRPUOTIODIATPTUN UT 3ABM d JUSPTOUT
JO 90UPPTOUT JO STSUEB SNSID9A DABM AS P23D9TJ21 JO UOTIOITI31 JO a13uy t *3T4d

(saubap) Ig ‘aduapioul jo 31buy
06 Gl 06 G2 0]
I | | 1 0

55

|
n
<
(aa1bap) NSg ‘uoiyda|yes jo 31buy




*8311sodwod Axods sseT319qQTJ TRUOTIOVBATPIUN UT 2ABM J JUSPIOUT JO 9OUDPIOUT Jo aT1%ue
SNSI9A 2ABM J JUDPIOUT 03 S3ABM A§ pPUB J PPl193[J91 JO soTjex apnityduy ¢ 814

(8a1bap) Ig ‘aoyapioul jo 9 buy

06 Gl 0] G¢e 0
[ | I | G-
. >
E
— _ ol- =
\ - c
| Q.
)
—G0- mu‘v
- m
| wn
\O B
. >
Z m >
5 -
N > |
L
N/\N _ =

3ADM AS P3}d3(}4as jo 01404 apnjidwuy : 2
9ADM d P34d3143J 40 014D) 3pniiduy ;|

56




‘937sodwod Axoda sse1819qT] TBUOTIORITPIUN UT 9ABM 4 IUSPTOUTL 103
<£31un o3 Tenba Aousnbsij uerpeEl gutunsse ‘Aiepunoq oueld 03 TEWIOU SIXNT] A3asuyg

(931bap) Ig ‘aouapiour jo 8jbuy

9 314

06 Gl 0sS G¢ 0] N

\\\\\\\\\ B °

¢ 3

\ I

=

- 49}

>

—Hog- "

: o

. ™

o @

b = t L

/ / G e Q

2 | <

. \ o™

////Il\\\\N ToF m
| ] —
3|
—09 . le
(¢) PuD(2)* (1) 40 saxnjy Abiadua judauodwod-z jo wNS: | leo
aADM d juapidul jo xnjy Abasus jusuodwod -7 : ¢ / ] ~
aADM AS pajdd|}aa jo xn|y Kbasus juauodwod -7 : 2 ! — 901 X086

|

aADM 4 Pa3)29)}aa joxnyy AbBisua juauodwod-7 :

57




‘uoTl1eangT Juod 3593 JTUOSBIITN-0]ISNODE IDIBIUOO-UOU JO ITIBUIYDS

uswidoads 3o|d
PI91} judwado|dsip pajda4aQ pI3l} $S314s paDIpLY

I.*,l

Y

— - —P

e | 1
132NpsSuDJ| 130NpsSuDJ4}
Buiatadas | Buijjiwsuoay
}2D}U02 - UON 120JU0d - WON
(+) °A (4 'A

[ "314

58




X ! T //, \\\ |
y h |18 P P \\ P |
‘ | P |
2 L I
‘ //\\N| ----------- y /Nn |
"g/ N\ * I
R |
X ) l
| </
| % |
I 7\
2nh | / \ |
! Rn / \ Rn |
L | / \ |
fl / \ I
5 | / \
! | / \ |
' | / \ |
I |
' |
|

Fig. 8 Path of P-P-... wave which arrives at point M
after n reflections from bottom boundary.

59




Taejoweied se ‘uswroads ojerd a31sodwod Axods Sse18199TJ jJO 92®3F wojjoq woaxj
U SUO0T3997392a Jo iaqunu yiTtm (Yy/y) uorjeiedas SSOTUOTSUBUWIP SNSIVA awll AevTa(

<

6

U/g ‘uorjpipdas ssajuoisuawi(
00¢ GZce 0GI GL O

| | | ——

)
(1]
b o1 &
2 2 5
g 3
J—
_g—¢ —GIl @
- =3
—oz w,
I ! ! . 4 —
_
v — G2

60




-usuroads 93eTd @31sodwod Axoda
SSBT819QTJ TRUOTIODITPTIUN UT 9ABM J I10J 2OUIPTOUT jo aT3ue snsida AITO00TaA @seyd 0T *314

(984bap) g ‘saduapioul 4o a|buy
06 Gl oS G¢ o
I [ | I 0'¢

(sywy) 1D ‘A4130]9A 8sDUd

61




Fig.

11

N -

Schematic illustrating sinusoidal point load exciting
infinite transversely isotropic medium, where Xy plane

is isotropic plane in cartesian coordinate system
defined by 0(x,y,z).
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